几种大棚蔬菜的温度要求

几种大棚蔬菜的温度要求

一、几种大棚蔬菜对温度的要求(论文文献综述)

郭磊[1](2021)在《基于STM32的温室环境监测和控制系统》文中研究说明我国淮河以北的地区冬季气温较低,为了满足种植物生长对环境的需要,建设了很多温室。近几年,伴随着农业生产方式的改变,农村经济不断发展,渐渐从粗放型发展为集约型,在一些农村经济发展较快的地区,建设了一部分示范区,重点发展科技、生态产业,成为行业的标杆。这些变化都得益于信息技术的进步,为高科技智能化温室创造了便利条件。提高了温室的智能化,不仅使农作物产量和质量得到提升,还改变了温室作物的生长周期,使反季节瓜果蔬菜种类增多,满足了人们的需求。利用信息技术可以实现远程监测和控制,进而减轻生产人员的劳动强度,降低对从业人员种植水平的要求。目前应用中的监测装置结构简单,仅仅实现监测数据的传输,未在系统内部建立种植物实际生长环境参数模型,也未实现根据导入的参数模型对环境因子进行自动调控,占用了很多人力和财力,却没有收到很好的效果。尤其是单个种植户管理的温室数量越来越多,管理难度增大,他们需要一种可以远程管理的自动控制设备作为辅助。结合已有问题和实际需要,本文应用STM32作为总控制器处理器,STC单片机作为采集部分的处理器,选用可以检测温室空气参数的传感器作为输入,每个温室里装有一个ZigBee设备和总控制器传送数据,园区内所有ZigBee设备组成内部网,总控制器装有一个运用NB-IoT技术的无线模块,将园区状态传到手持终端。这样设计的目的是利用局域网的稳定可靠优势,一个园区一个远程传输模块,既节省成本又保证通信的可靠性。在移动终端利用有人透传云平台接收总控制器传输的数据,并显示出来,将采集到的数据与设置的阈值比较,超过阈值显示报警信息。将常见温室种植农作物生长过程中的适宜环境参数加载到软件中,供生产人员参考,降低生产人员的工作难度。设备运用的技术涵盖嵌入式系统、传感器技术、短距离窄带远程通信等内容,设备测试结果表明传输数据准确,响应迅速,数据传输效果稳定可靠,克服了传统监测设备的弊端,达到了预期目标。系统较之前的监测设备,具有监测结果误差小,响应快,监测范围大、智能化程度高等优点。主要创新点是可以实时保存种植物生长过程中的环境参数,建立实际生长参数模型,还可以导入生长参数模型实现环境因子的自动调控,将多个温室组成局域网,提高农业生产的先进性,在农业经济发展理论及应用研究方面都具有重要意义。

孙潜[2](2021)在《内保温日光温室温光性能的研究》文中研究表明日光温室是满足冬季作物生产的重要农业设施,不仅能够解决我国北方冬季新鲜蔬菜水果供应少而难的问题,同时能够利用太阳能作为驱动温室生产的能量来源,降低能耗甚至是零能耗,为我国社会经济以及生态带来了巨大效益。内蒙古地处我国北疆,光照充足,是发展日光温室产业的理想区域之一。但是,往往也要面临冬季高寒风冽的气候问题。传统日光温室常采用保温被外覆盖方式进行温室保温,但是外保温被很容易受外界不良环境影响,保温被老化破损都会导致温室保温性下降,甚至受潮吸水而增大自重,对温室结构安全产生威胁。日光温室的保温蓄热不仅是温室设计理论的研究重点,也是生产实践的重要保障。基于内蒙古地区气候条件以及日光温室设计理论,内蒙古农业大学设施农业课题组在传统日光温室的基础上,优化了温室结构,针对性地设计出保温被内置式的内保日光温室,为日光温室结构创新提供了依据,也驱使日光温室向着更加保温蓄热的方向发展优化,同时也能够缓解了内蒙古高寒地区日光温室生产所面临的燃眉之急。但是,基于传统日光温室基础上优化改进的内保温日光温室在实践中也存在大量不足,主要体现在与内保温日光温室相配套的一些理论及技术的研究相对滞后,为此,本研究首先对比分析了普通日光温室(NG)和内保温日光温室(IG)室内光照的时空变化规律,明确了内保温日光温室的采光特性。其次在前人日光温室太阳辐射模型的研究基础上,建立了内保温日光温室太阳辐射模型,并利用模型对影响内保温日光温室光环境的因素进行研究。最后通过对比四种不同覆盖类型的内保温日光温室,即单膜单保温被覆盖厚型墙体温室(G1)、双膜单保温被覆盖厚型墙体温室(G2)、双膜双保温被覆盖厚型墙体温室(G3)、双膜双保温被覆盖薄型墙体温室(G4),明确了不同内保温日光温室的热环境特性,以期为内蒙古高寒地区温室结构设计优化、环境调控提供理论依据。主要研究结果如下:1)相比于普通日光温室,内保温日光温室光环境在不同天气条件及时空分布均有提高。晴天时(2015年1月10日),内保温日光温室平均太阳辐射较普通日光温室可提高9.7%~16.8%,平均采光率可提高11.11%~16.89%,太阳能截获累积量可提高9.82%~17.06%;而阴天时(2015年1月6日),平均太阳辐射可提高14.4%~17.7%,平均采光率可提高15.22%~19.64%,太阳能截获累积量可提高17.28%~17.51%。2)建立内保温日光温室太阳辐射模型,模型R2在0.89~0.96之间,模拟内保温日光温室太阳辐射的精准度较高。通过模型计算可知,冬至日时,上午偏东方位温室透光率高于偏西方位,而下午则相反;不同方位温室内地面太阳辐射差异较小,主要是温室墙体获得最大太阳辐射的时间节点,正南方位出现于中午,偏西方位中午延后,偏东方位中午提前。全天地面和墙体太阳辐射累积总量正南方向最多,随方位角增大而减少,且相同方位温室之间的差异较小。3)通过模型计算,分析了保温被位置对室内光照的影响,结果表明:随着保温被水平投影长度增加时,保温被越来越多地阻止了进入温室的太阳辐射,尤其是墙体获得的太阳辐射越来越少,与保温被水平投影长度为0时(L=0m)相比,不同水平投影长度降低了墙体和地面太阳辐射日累积量11%~78.53%,不利于温室采光以及墙体蓄热。4)相比于其他三座温室,G3对于温室热环境的营造要更突出。连续一个月(2016年12月15日~2017年1月15日)测试结果表明:夜间温度G1下降最快,G3下降最慢;连续晴好天气时(2017年1月11日9:00~1月14日9:00),G1,G2、G3、G4夜间平均气温分别为10.5℃、12.4℃、13.1℃、11.9℃。连续不良天气时(2016年12月22日9:00~12月26日9:00),G1,G2、G3、G4夜间平均气温分别为8.5℃、10.4℃、11.1℃、9.3℃。G1表现最差,G4表现次之,G2表现较好,G3表现最佳。5)连续一周(2017年1月1日~1月7日)的温室运行中,4座温室夜间相对湿度均可达90%以上。土壤20 cm处平均温度G1、G2、G3、G4分别为13.7℃、16.8℃、17.5℃、14.2℃。6)4座温室墙体20 cm处温度变化最剧烈,晴天时(2017年1月2日9:00~1月3日9:00),G1、G2、G3、G4平均温度分别为13.4℃、16.3℃、17.4℃、11.9℃;阴天时,(2017年1月6日9:00~1月7日9:00),分别为10.9℃、12.9℃、14.2℃、10.8℃。晴天时G1、G2、G3墙体40 cm、80 cm深温度变化趋于稳定;阴天时G1、G2、G3墙体80 cm深温度变化趋于稳定,40 cm处仍然释放热量。7)G1、G2、G3、G4每平方米建造成本分别为284.7元、293.4元、317.7元、236.9元。G3热环境营造最好,但成本也最高;G4成本最低,热环境略好于G1,但墙体蓄热效果较差。

邱晔[3](2021)在《江苏地区西甜瓜重要害虫生物学及防治技术研究》文中进行了进一步梳理西甜瓜是西瓜和甜瓜的统称。随着江苏地区西甜瓜产业设施栽培规模的不断扩大,各种新品种推陈出新,产业稳步提升。但西甜瓜在其生长季节,经常遭受病虫的为害,为害轻者减产10%~30%,重者减产可达50%左右,严重影响西甜瓜的产量和品质,从而影响到西甜瓜的经济效益,制约西甜瓜产业稳步健康发展。因此,开展西甜瓜病虫害的调查及防治技术研究具有重要意义。本文对江苏地区西甜瓜害虫种类及发生为害进行了调查,针对重要害虫瓜绢螟和截形叶螨的生物学进行了研究,并开展了瓜蚜、瓜绢螟和截形叶螨的防治试验。现将主要结果总结如下:1、江苏地区西甜瓜主要害虫种类及发生为害调查2019-2020年在江苏主要产区的西甜瓜上调查收集到的害虫隶属6目12科20种,其中螨类1科3种。在田间为害严重的有8种,分别是半翅目的瓜蚜Aphis gossypii Glover和烟粉虱Bemisia(Gennadius);双翅目的三叶斑潜蝇Liriomyza trifoli(Burges)和美洲斑潜蝇Liriomyza sativae(Blanchard);鳞翅目的瓜绢螟Diaphania indica(Saunders)和甜菜夜蛾Spodoptera exigua(Hubner);蜱螨目的截形叶螨Tetranychus truncatus Ehara和二斑叶螨 Tetranychus urticae Koch。2、瓜绢螟的外部形态、龄期划分及生物学特性研究观察描述了瓜绢螟卵、幼虫、雌雄蛹及雌雄成虫的外部形态特征,并拍摄了各虫态的形态照片;通过测量统计瓜绢螟幼虫的头壳宽度,明确了瓜绢螟幼虫共分为5个龄期。越冬调查发现,江苏地区瓜绢螟主要以蛹越冬。过冷却点测定表明,瓜绢螟卵的过冷却点最低,为-22.86℃,其次为雌雄成虫,分别为-14.95℃和-12.03℃,雌雄蛹的为-13.01℃和-12.08℃,低龄和高龄幼虫过冷却点最高,分别为-12.19℃和-5.38℃。在21-33℃范围内,瓜绢螟的发育历期随温度的升高而缩短,33℃条件下内禀增长率rm和周限增长速率λ最高,分别为0.1792和1.1963,但在30℃条件下净增值率最大(R0=84.2123);世代平均周期从 21℃到 33℃逐渐缩短,分别为 43.0271、36.2189、28.0968、27.6177 和 20.5319;总生殖率GRR在27℃条件下最大,为94.4864,而在33℃下雌虫产卵量开始降低,此温度不利于瓜绢螟繁衍;瓜绢螟卵、幼虫、蛹、成虫和全世代的发育起点温度分别为13.54℃、9.90℃、14.28℃、15.00℃和 13.49℃,有效积温分别为 38.00 日度、287.00 日度、77.72 日度、277.60日度和362.90日度。3、不同西甜瓜品种对截形叶螨生长发育的影响在实验室条件下,研究了截形叶螨取食5个不同西甜瓜品种(西瓜早佳8424、西瓜美都、西瓜嘉美和甜瓜金玉红2号、甜瓜玉菇)对其发育历期、产卵量和生命表参数的影响,结果表明西瓜早佳8424是最适宜截形叶螨生长和繁殖的品种,而西瓜嘉美具有较高的抗虫性。4、西甜瓜主要害虫的防治试验应用银色膜覆盖对田间瓜蚜的趋避效果进行了调查,结果表明银色膜覆盖具有较明显趋避蚜虫的作用。采用叶片浸渍法和喷施法,用7种药剂对蚜虫进行了毒力试验,结果表明施药3d后10%溴氰虫酰胺水分散粒剂防效最高,为88.89%,其它药剂的防效均低于70%,因此10%溴氰虫酰胺可作为防治瓜蚜的推广药剂。通过玻片浸渍法和喷施法,测定了 6种药剂对截形叶螨的防治效果,结果表明73%炔螨特乳油的速效性和持效性最优,其防效达95.67%,其次是5%唑螨酯悬浮剂,防效为88.00%。此外,对瓜绢螟幼虫也进行了室内毒力试验,结果表明10%四氯虫酰胺悬浮剂防效为91.11%,对瓜绢螟具有较好的杀虫效果。

郝策[4](2021)在《十二水磷酸氢二钠相变储能材料的改性及应用研究》文中进行了进一步梳理我国传统的温室大棚存在能源利用率低的问题,白天多余的热量不能储存,夜间热量损失严重,出现热量在空间与时间供求不匹配的问题。相变储能材料可以实现白天温度升高进行储能,夜间降温再释放热能的作用,但是相变储能材料本身存在过冷、相分离、泄漏等缺陷,限制了其应用。以十二水磷酸氢二钠为基体相变材料,对其自身的性能进行了研究,并通过添加不同改性物质对基体材料做了改性研究,目的是通过改性的研究制备出能够应用于温室大棚的复合储能材料。对十二水磷酸氢二钠做了熔化实验,以熔化曲线、冷却曲线、XRD等表征手段分析了其熔化、结晶过程。不同温度下冷却生成产物不同,40℃与45℃环境下冷却生成Na2HPO4·12H2O,而50℃条件下还有Na2HPO4·7H2O生成。实验表明,十二水磷酸氢二钠在45℃下保温会失水生成Na2HPO4·7H2O与其溶液,而Na2HPO4·7H2O在高于50℃时会继续失水形成溶液,并且失水过程可逆。十二水磷酸氢二钠的熔化过程分为物理熔化与化学脱水两个阶段,在失水之前,越接近脱水的临界状态过冷度越大,最大可达到25.5℃。失水后形成溶液与沉淀,每10g样品分别加入5ml、10ml、15ml的水对沉淀进行溶解,并对得到的溶液物质测试过冷度,过冷度分别为9.8℃、13.1℃、14.4℃,溶液浓度越低过冷度越大。以九水硅酸钠、硅藻土、纳米氮化铝、皂土这四种不同物质为成核剂并研究了四种成核剂对基体材料性能的影响。添加九水硅酸钠的样品测得过冷度分别为4.5℃、5.5℃、7.5℃,相变潜热值分别为151J/g、147J/g、187.7J/g。添加硅藻土的样品过冷度分别为9.8℃、4.7℃、4.3℃,相变潜热值分别为157.7J/g、175.7J/g、198.5J/g。随纳米氮化铝添加量的增加,样品的过冷度有增大的趋势,相变潜热值降低,添加量为1%时,过冷度可降低至3.4℃,潜热值可达220.9J/g。添加皂土不会降低过冷度,并且会使样品的潜热值降低。以水合碳酸钠为温度调节剂,按照1:1、1:2、1:3、1:4不同配比制备复合相变储能材料,利用步冷曲线测得相变温度分别为21.2℃、24.8℃、26.4℃、29.3℃,当混合比例为1:2时制备的复合材料,相变温度为24.8℃,适合应用于温室中,但仍然存在3.1℃的过冷度,在水合碳酸钠与十二水磷酸氢二钠按1:2混合的基础上添加1%纳米氮化铝,经测试表征,复合材料的相变吸热温度在25℃左右,过冷度降低至1.6℃。针对复合材料与墙体结合容易泄露的问题,设计了应用装置,将复合相变储能材料利用料管单独封装,再将料管集成储热箱,利用风机实现冷热空气的热交换,进而实现对温室大棚温度调节的目的。

高海燕[5](2020)在《北方大棚蔬菜种植技术及病虫害防治策略》文中研究说明本文以北方大棚蔬菜的种植与病虫害防治为探讨主题,结合当前蔬菜种植在我国北方的发展现状,分析影响大棚蔬菜种植的主要因素,从品种的选择、种植基地的选择、栽培管理以及肥料应用四个方面阐述了大棚蔬菜种植的技术要点,从农业、生态以及生物与物理角度总结了防治大棚蔬菜病虫害的有效方法。

孙亚琛[6](2020)在《日光温室立体循环主动蓄热系统结构优化与传热特性研究》文中研究说明现有主动蓄热日光温室墙体具有较好的蓄热效果,对改善室内夜间热环境起到了重要作用,但也存在前屋面热量损失大、建造成本高、蓄热量较小、传热效率较低、气流运动方式不合理之处,未将后墙及土壤的蓄热潜能充分发掘。亟需开展主动蓄热循环系统墙体与土壤的结构优化和传热特性的研究。为此,结合课题组前期研究成果,本文首先从前屋面保温入手,优化保温措施,降低热量损失;其次从墙体与结构入手,应用新材料、新形式改善墙体蓄热与保温;最后从主动蓄热气流运动入手,优化运动路径,提升主动蓄热效能。围绕日光温室立体循环主动蓄热系统结构优化与传热特性展开研究,主要研究结果如下:(1)热工缺陷的存在会导致热工缺陷区域换热系数增大,热量流失加快,温度降低。热工缺陷区域面积占比越大,换热系数和热流密度增大趋势越明显,温度下降也更为明显。在室内温度相同、没有热工缺陷情况下,通过围护结构的热流密度不同,其大小依次为前屋面>后屋面>后墙,即前屋面是室内热量损失的主要通道;相比于前屋面和后屋面,墙体对热工缺陷更为敏感。结合传热理论与试验结果分析,综合考虑温室结构、作物需求、室外最低温度、保温被自身参数等要素,给出了不同外界最低温度下,保持试验温室维持最低温度时保温棉被的厚度与导热系数表达。(2)在同等天气条件下,混凝土管沙柱后墙(W3)和轻骨料加气混凝土砌块后墙(W2)对于温室内温度的保持均优于传统普通粘土砖墙(W1)。在典型天气条件下,白天温室W2与W3的室内最高温度基本一致,均高于温室W1的最高温度;W2室内温度略高于W3的室内温度,W1室内温度最低。温室W3温度分布比W2更为均匀。墙体W3的蓄热量和放热速率远远高于墙体W1和W2,墙体W3的隔热蓄热综合表现优于墙体W2和W1。(3)相同换热管道在粘壤土中的换热量最小,沙土中的换热量最大;在覆盖层相同时,PVC全管单位时间换热量最小,而PVC多孔管单位时间换热量最大。改变管道形式能够改善地中热交换系统的换热量,且改善程度与土壤质地无关;在管道上设置大量孔洞,对换热的改善效果最为显着。(4)在相同时间内,采用顶进底出分布风道(DF)的后墙换热量最大,而顶进侧出分布风道(CF)的后墙换热量略大于顶进底出直上直下风道(Z)的后墙换热量;主动蓄热墙体整体温度高于被动墙体整体温度,其中采用顶进底出分布风道(DF)的后墙整体温度最高,温度分布也最均匀;分布风道有利于改善墙体蓄热范围。顶进底出分布风道(DF)是3种主动蓄热风道布置中最优的,室内平均温度提升最明显,夜间温度最高,温度更为均匀。(5)分别对采用后墙顶进直上直下直联地中单管直出(L1)、后墙顶进分布4管直连地中分布4管直出(L2)和后墙顶进直上直下、地中分布4管(L3)等3种不同布置方案的立体循环主动蓄热温室的温度特性进行了分析。发现L2方案最优,温室内蓄热体蓄热量最大,室内温度最高。相比于单独后墙主动蓄热,立体循环主动蓄热能明显提升夜间室内温度和土壤温度:相比于优化的后墙主动蓄热温室,采用L2方案的温室在室内温度最低时的最低温度提升了0.72°C,平均温度提升了1.75°C;与被动蓄热后墙温室相比,室内温度最低时的最低温度提升了3.28°C,平均温度提升了3.49°C。试验验证表明在冬季连续阴(雪)天条件下,相比于传统被动蓄热温室,L2立体循环主动蓄热温室室内温度最低时的最低温度提升了1.85°C;室内土壤温度最低位置的最低温度提升1.46~1.5°C。本研究结果为主动蓄热日光温室的围护优化、墙体材料优选、主动蓄热管道形式与布置方式优化提供了技术参考和理论依据,具有一定的理论和推广应用价值。

余路明[7](2020)在《大跨度保温塑料大棚(WSOTPG)小气候特征与评价》文中提出WSOTPG大棚结合了塑料大棚和日光温室的特点,有机械卷放的外保温、无后墙结构。该种WSOTPG大棚是一种新的设施形式,目前对其各方面的研究较少。为探明该种设施环境小气候特征,指导其科学利用,本文研究了 3中番茄茬口管理模式下大棚的小气候特征,以及2种保温被管理方法对大棚小气候的影响,调查了不同大棚番茄生长模式的成本和收益,在此基础上分析了在3种茬口生产中大棚温度与番茄生长适温的匹配度,从而对该种WSOTPG大棚进行基于小气候的分析评价。主要结论如下:1.棚室整体小气候特征:该种WSOTPG大棚周年月均气温为10.9~30.4℃,地温为12.7~31.2℃。冬季典型节气晴天日均温在10℃以上,阴天最低日均温5℃以上,夏季典型天气最高日均温为32.8℃。大棚纵切面温度日分布较为均匀,但10时~14时的温度均匀性略低。按气候学划分,该种大棚能增加春季33d、延长秋季41d。棚内月均湿度在11月~次年2月较高(高于90%RH);在10月下旬至3月上旬棚内夜间均为叶片沾湿的状态,白天叶片沾湿时间也在一半以上。大棚晴天日均光照在25479Lux~84217Lux之间,透光率在51.8%~67.5%之间,对大棚保温被阴影的出现时间、位置的模拟与实测有较高的相关性(R2=0.997),误差在0.6m以内。2.温度适宜度:该种WSOTPG大棚冬春茬温度适宜度最高,秋冬茬最低。冬春茬气温、地温的适宜均为苗期最高,结果期最低,气温、地不适宜(<0.3)的情况基本未发生。越冬茬气温、地温的适宜度为苗期最高,开花期最低。气温不适宜主要发生在12月6日~1月4日、1月5日~2月23日;地温不适宜发生在1月10日~1月15日、2月10日~2月18日,不适宜的因素主要是低温,气温低于适宜的平均时长为9h(每12h),低于适宜温度2.51℃。秋冬茬气温适宜度为开花期最高,结果期最低;地温适宜度为开花期最高,苗期最低。气温的不适宜主要发生在8月31日~9月9日、12月6日~1月15日;地温不适宜发生在8月31日~9月9日、1月10日~1月15日。在苗期温度不适宜的因素主要是高温,气温可高出适宜4.5h(每12h),高出0.78℃。地温高出适宜8h(每12h),高出0.59℃。结果期不适宜的主要因素为气温过低,气温低于适宜温度的时长达7h(每12h)、低于适宜0.9℃。3.环境调控措施:冬季晴天保温被分段覆盖的处理日均气温比对照高1.8~3.5℃,地温高0.9~2.5℃;阴天处理日均气温比对照高0.8~1.8℃,地温高1.2~2.2℃。晴天处理的白天湿度比对照低8.9~19.7%RH,阴天低1.0~7.3%RH。晴天处理的光照比对照低1.6%、阴天低16.4%。冬季晴天双层覆盖处理平均气温比对照高2.1~6.6℃,地温高0.9~2.9℃;阴天处理气温比对照高0.3~2.4℃,地温高0.7~1.3℃。白天处理平均湿度比对照高1.8%RH;夜间比对照高0.7%RH。晴天处理光照比对照低22.4%,阴天处理比对照低19.3%。夏季晴天保温被遮阳处理日均气温比对照低1.9~3.7℃,地温低1.8~3.1℃。阴天处理气温比对照低0.2~1.4℃,地温低0.7~1.0℃。晴天遮阳时段,处理相对湿度比对照高3.1%RH,阴天遮阳时段,处理大棚比对照高4.3%RH。晴天日均光照比对照低28.1~41.0%。阴天处理比对照低26.0·40.2%。4.利用模式及效益分析:该种WSOTPG大棚较为科学的利用模式为:冬春茬2月下旬定植,3月下旬结束夜间外保温覆盖,6月下旬拉秧。随后进行秋冬茬番茄栽培,秋冬茬在8月下旬定植,8月下旬~9月下旬高温时段可使用保温被遮阳,10月末开始夜间外保温覆盖,至1月中旬拉秧。该大棚总造价29.87万元,折合149.34元/m2,大棚每年折旧费2.6万元。按照冬春茬-秋冬茬的番茄种植模式,年成本为5.7万元,年收入约为13万元,收益率FIRR为22.3%,收回投资为5.2年。

程仕发[8](2020)在《智能温室大棚监控系统的研究与设计》文中认为我国是一个拥有14亿人口的农业大国,人多地少,传统的温室大棚已经初具规模,智能温室大棚是现代农业的显着标志,对大棚内环境参数进行智能调控是关键技术。我国进行智能大棚的研究起步较晚,与国外发达国家具有一定的差距,因此展开对智能温室大棚的研究具有重要的实际意义。本课题针对国内现有的温室大棚控制系统智能化程度低、控制环境变量单一、通信方式较落后、信息采集方式繁琐等问题,利用现代计算机技术、传感器技术、无线通信技术以及模糊控制技术,设计了一套具有现代智能控制水平的温室大棚环境控制系统。主要在以下几个方面做出了研究:查阅了国内外在温室大棚智能控制系统研究方面的大量资料,了解最新的温室控制技术,通过认真分析本课题提出的控制需求以及最终要达到的目标,确定智能温室大棚控制系统的设计方案。由于种植示范基地大棚数量较多,为了便于集中管理,最终确定系统为一种分布式结构,采用单套上位机控制多套下位机。环境数据采集部分,选取ZigBee无线通信方式,确定其无线传感网络为星型拓扑结构;控制单元对数据进行处理后根据模糊逻辑控制等智能控制原则,输出控制信号控制环境调控设备对大棚内环境进行调节。根据总体设计方案要求,本文设计了基于ZigBee技术的无线数据采集终端节点,对温室大棚内的空气温湿度、二氧化碳浓度、土壤的温湿度、土壤的PH值以及风速的环境参数的数据采集,构建了ZigBee星型网络拓扑结构,实现了采集数据的无线传输至上位机PC平台进行数据处理、存储以及监控的目标;采用PLC(可编程逻辑控制器)作为控制系统的主控制器,提高了系统的可靠性,系统上位机PC平台将前端采集到的各种环境参数数据进行处理后,采用以太网的形式通过一定的通信格式将数据发送给PLC主控制器,PLC根据工作人员在人机界面设置的环境阈值对相应的执行机构进行控制,启动升温降温、加湿除湿、通风换气等调控设备,调控温室内部的环境参数,让农作物生长在适宜的环境中,提高农作物的产量与质量,增加经济收益。为了对项目中所开发的软硬件进行可行性验证,在某种植示范基地进行现场联合调试和测验,经调试和运行证明,温室环境数据采集准确、通讯状态稳定,该系统达到了预期设计目标,符合项目最终要求。

张帅帅[9](2020)在《耐酸耐盐多抗细菌的筛选及其对植物几种真菌病害的抑制作用》文中指出真菌性土传病害是农业生产中分布较广、侵染普遍、危害较大的一类植物病害。不合理施肥和植物长期连作种植导致土壤理化性质失衡,产生土壤酸化、盐渍化、病原菌积累和有益微生物减少等系列问题,是诱导土传病害发生的主要原因。本论文针对土壤的酸化、盐渍化现状,以真菌性病害的生物防治为主要目标,筛选具有耐酸、耐盐、拮抗多种病原真菌的功能菌株,探索了功能菌株对几种真菌性病害的防治效果,并进行了菌株其它功能的探索及培养基、发酵条件优化,为生产中真菌性土传病害的生物防治奠定基础。首先,进行耐酸、耐盐、高拮抗活性的功能菌株筛选。从酸性土壤、盐性土壤和喜酸耐盐植物中,采用酸性高盐培养基筛选耐酸耐盐菌株,获得90株耐酸耐盐菌。然后,针对6种植物病原真菌(Athelia rolfsii、Fusarium、I.mors-panacis G3B、Colletotrichum fragariae Brooks、Glomerella cingulata、Botrytis cinerea Pers),通过平板对峙法筛选获得17株拮抗菌,其中10株为Bacillus属,2株为Pseudomonas属,2株Lysinibacillus属,Rhizobium属、Agrobacterium属和Burkholderia属各1株。耐酸耐盐检测结果表明,17株菌均可耐5%Na Cl和p H值为2的酸,其中菌株Pseudomonas LG-1和SH8-4可耐7%Na Cl,菌株Bacillus HZMJW1-10、HZMJW1-11、ZJTZ2、SH8-2、SH8-5、SH8-6和Burkholderia SH8-3可耐11%Na Cl;Lysinibacillus HZLJC2-2和HZLJC2-9可以在p H为2的耐酸培养基中生长。挑选对6种病原真菌抑制率为50%以上的5株菌(Bacillus HZMJW1-10、Bacillus HZMJW1-11、Pseudomonas LG-1、Bacillus ZJTZ2和Burkholderia SH8-3)进行抑菌谱测试,发现这5株菌对其它9种植物病原真菌均具有较强的抑制效果,由此获得5株耐酸耐盐多抗细菌。其次,从5株多抗细菌中选择4株不同种拮抗菌进行抗病和其它功能测试。离体实验采用葡萄果实、番茄幼苗、番茄根部、三七块根和西瓜幼苗为材料,结果表明,4株拮抗菌对葡萄炭疽病、葡萄灰霉病、番茄白绢病、根腐病和西瓜枯萎病的防治效果均达到75%以上;盆栽试验结果表明,在正常土壤(p H为6.8,盐为0.22g/kg)和设施土壤(p H为5,盐为0.45g/kg)中,HZMJW1-10、LG-1和SH8-3对西瓜枯萎病和番茄白绢病的生防效果均达到了100%,ZJTZ2的拮抗活性为66.67%。接下来通过特异PCR对4菌株抗生素合成酶基因进行扩增,结果发现4株菌均具有合成依枯草菌素(Iturin A)的潜能。对菌株产铁载体、IAA及ACC脱氨酶等功能进行检测,发现4株菌株均可产生IAA;菌株LG-1和SH8-3可以产生铁载体,其中菌株SH8-3产量最高,为21.97μg/m L,菌株LG-1具有ACC脱氨酶活性,由此可见这4株菌不仅具有耐酸、耐盐和高拮抗活性的功能,还具有促生的作用。最后,通过单因素试验、正交试验和响应曲面法对4株功能菌的培养基成分、配比和发酵条件进行优化。单因素和正交试验结果表明,菌株HZMJW1-10、LG-1、ZJTZ2和SH8-3的最佳碳源是葡萄糖(2%),最佳无机盐是氯化钾(0.4%),菌株HZMJW1-10和ZJTZ2的最佳氮源是蛋白胨(1%),菌株LG-1和SH8-3的最佳氮源是硝酸钾(1%);4株菌的最适培养条件是28℃、220 r/min、初始p H为7和3%的接种量。通过响应曲面试验探索功能菌最优发酵条件的结果表明,优化后菌株LG-1对葡萄炭疽病病原菌的抑制率为优化前的1.38倍,其它菌株发酵条件在优化后,抑制率都有明显提升。因此,单因素试验、正交试验和响应曲面法可以通过优化功能菌发酵条件来有效提高抑制率,达到最优水平。综上,本研究获得5株耐酸耐盐可拮抗15种常见植物病原真菌同时具有促生功能的多功能细菌,通过优化发酵条件有效提高对病原菌的抑制作用,为由土壤酸化和盐渍化诱导的真菌性土传病害生物防治提供借鉴。

张泉[10](2020)在《基于大棚固碳的太阳能智能灌溉调控系统的研究》文中研究指明随着我国人口数量的增加和工业化进程的加快,二氧化碳过度排放增加对全球变暖的影响受到了人类的普遍关注,控制或减少二氧化碳排放是人类保护生态环境的重要举措。尽管二氧化碳排放总量的增加为人类带来了诸多不利影响,但二氧化碳又是一种有用的资源,特别是在农业生产上有着许多良好的用途,对促进农业生产可持续发展起到了十分重要的推动作用。本文着重利用温室大棚固碳技术提高CO2在农业应用领域的利用率。大棚固碳即植物通过光合作用可以将大气中的二氧化碳转化为碳水化合物,并以有机碳的形式固定在植物体内,提高农作物的碳吸收和储存能力,从而提高CO2气肥的利用率,减少温室气体的排放。本文主要研究内容包括:(1)搭建气肥灌溉决策模型以番茄为研究对象,根据大棚内种植环境,确立了以光照强度及温度为变量的模糊控制策略。Lab VIEW面板作为上位机,负责对番茄生长的各种参数(大棚内温度、光照强度和二氧化碳浓度)进行设定,下达采集的指令,接收传感器上传的数据,并传入模糊控制系统,然后根据所建立的模糊规则对当前状态下的作物光合作用速率进行极大值寻优,自动输出对应的二氧化碳浓度。将模型值与理论值对比,二者的相对误差小于3.5%,证明搭建的气肥灌溉决策模型的调控精度较高。(2)建立大棚固碳灌溉调控系统根据功能分析与性能分析之间的要求,调控系统分为登录,液位/土壤湿度监控、温度监控、光照监控、CO2浓度监控等5个模块。系统硬件主要包括太阳能电池、电路控制箱、水管、滴灌喷头、温室大棚、CO2气罐、传感器、PLC通信电路等,完成对大棚内各种参数信息的采集、传输以及人机交互,从而搭建大棚固碳调控灌溉平台;调控界面的设计与开发基于Lab VIEW的G语言程序软件,实现基于传感器网络的大棚环境的监控、操作提示、二氧化碳浓度的输出与控制等功能。(3)番茄种植验证实验搭建基于大棚固碳的模糊控制灌溉实验平台,利用Labview/PLC实现了模糊控制。设计两组施肥灌溉实验组与一组自然生长对照组,利用研究所得气肥灌溉决策模型进行施肥灌溉。分别将传统自然生长组、三角函数组与高斯函数组气肥施肥量进行对比,通过对番茄苗检测光合速率,株高,及其变化率获得最终结果。结果表明实验组较对照组番茄株高增长最大超过43.41%,光合作用速率最大超过53.67%;上述指标,高斯函数组又较三角函数组超过13.86%。二氧化碳浓度、土壤含水率、温度、光照强度等参数的调控误差均小于4%。通过对照试验,证实了大棚固碳调控系统有益于农作物的生长,相对提升了作物光合作用速率和产量。实验表明大棚固碳调控系统能够提高二氧化碳的利用率,达到固碳增产的目的。

二、几种大棚蔬菜对温度的要求(论文开题报告)

(1)论文研究背景及目的

此处内容要求:

首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。

写法范例:

本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。

(2)本文研究方法

调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。

观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。

实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。

文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。

实证研究法:依据现有的科学理论和实践的需要提出设计。

定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。

定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。

跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。

功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。

模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。

三、几种大棚蔬菜对温度的要求(论文提纲范文)

(1)基于STM32的温室环境监测和控制系统(论文提纲范文)

摘要
ABSTRACT
第1章 绪论
    1.1 论文背景与研究意义
    1.2 国内外发展现状
        1.2.1 国外温室
        1.2.2 国内温室
    1.3 本文的研究内容
    1.4 论文的组织结构
第2章 系统的实施方案和应用的技术
    2.1 系统的功能分析与设计
    2.2 ZigBee技术
        2.2.1 ZigBee技术概述
        2.2.2 ZigBee网络协议
        2.2.3 ZigBee网络拓扑结构
    2.3 NB-IoT技术
        2.3.1 NB-IoT技术概述
        2.3.2 NB-IoT技术的特点
        2.3.3 ZigBee、LoRa、NB-IoT比较
    2.4 嵌入式系统
        2.4.1 嵌入式系统概述
        2.4.2 嵌入式系统的几个特征
        2.4.3 嵌入式系统的分类
        2.4.4 μCOS嵌入式操作系统
第3章 系统硬件电路设计
    3.1 系统总体硬件设计
    3.2 采集节点部分硬件设计
        3.2.1 单片机选型与设计
        3.2.2 ZigBee模块选型与设计
        3.2.3 传感器选型与设计
        3.2.4 采集节点部分PCB电路板图设计
    3.3 通信控制器硬件设计
        3.3.1 处理器选型与设计
        3.3.2 NB-IoT选型与设计
        3.3.3 通信控制器部分PCB电路板图设计
第4章 系统软件设计
    4.1 ZigBee无线通信协议模块软件设计
        4.1.1 概述
        4.1.2 Zigbee组网
        4.1.3 通信协议
    4.2 采集节点模块软件设计
        4.2.1 温湿度采集部分程序设计
        4.2.2 光照强度采集部分程序设计
        4.2.3 MG811 二氧化碳浓度采集部分程序设计
        4.2.4 单片机程序设计
    4.3 通信控制器部分程序设计
        4.3.1 STM32 处理器的程序设计
        4.3.2 基于μCosⅡ的软件设计与移植
    4.4 云平台设计
        4.4.1 WH-NB75 的工作模式
        4.4.2 有人透传云平台设计
    4.5 农作物生长模型建立
第5章 系统测试结果与分析
    5.1 无线数据通信测试
    5.2 系统功能测试
第6章 总结与展望
参考文献
致谢
在学期间主要科研成果
    一、发表学术论文
    二、其他科研成果

(2)内保温日光温室温光性能的研究(论文提纲范文)

摘要
abstract
1 绪论
    1.1 研究背景
        1.1.1 我国日光温室发展状况
        1.1.2 日光温室发展存在的问题及新要求
    1.2 研究状况
        1.2.1 日光温室结构合理性及优化研究
        1.2.2 日光温室环境调控及理论研究
    1.3 研究意义、内容及方法
        1.3.1 研究意义
        1.3.2 研究内容、方法
2 内保温日光温室光环境特性及其影响因素分析
    2.1 材料与方法
        2.1.1 试验温室及其参数
        2.1.2 试验项目
    2.2 内保温日光温室太阳辐射模型
        2.2.1 模型概述与简化
        2.2.2 模型建立
    2.3 评价指标与数据处理
        2.3.1 评价指标
        2.3.2 数据处理
    2.4 结果与分析
        2.4.1 内保温日光温室室内太阳辐射照度分布规律分析
        2.4.2 内保温日光温室太阳辐射模型验证
        2.4.3 内保温日光温室光环境影响因素分析
    2.5 讨论与小结
        2.5.1 讨论
        2.5.2 小结
3 内保温日光温室保温蓄热性能分析
    3.1 材料与方法
        3.1.1 试验温室及其参数
        3.1.2 试验方法及项目
        3.1.3 数据处理
    3.2 结果与分析
        3.2.1 不同温室太阳辐射对比
        3.2.2 不同温室气温对比
        3.2.3 不同温室空气相对湿度对比
        3.2.4 不同温室土壤温度对比
        3.2.5 不同温室墙体温度对比
        3.2.6 不同温室建造成本对比
    3.3 讨论与小结
        3.3.1 讨论
        3.3.2 小结
4 结论与建议
    4.1 主要结论
    4.2 建议
    4.3 创新点
致谢
参考文献
作者简介

(3)江苏地区西甜瓜重要害虫生物学及防治技术研究(论文提纲范文)

摘要
Abstract
第一章 文献综述
    1.1 江苏省西甜瓜概况
        1.1.1 西甜瓜种植概况
        1.1.2 江苏省西甜瓜种植品种概况
    1.2 江苏省西甜瓜主要害虫的种类、危害及发生
    1.3 江苏省西甜瓜主要害虫防治研究概述
        1.3.1 农业防治
        1.3.2 物理防治
        1.3.3 生物防治
        1.3.4 化学防治
    1.4 本论文的研究意义和主要内容
第二章 江苏地区西甜瓜害虫发生为害调查
    2.1 材料与方法
        2.1.1 调查地点概况
        2.1.2 调查方法
    2.2 结果与分析
        2.2.1 江苏地区西甜瓜害虫种类及为害
        2.2.2 江苏地区西甜瓜主要害虫发生为害特点
    2.3 讨论
第三章 西甜瓜重要害虫瓜绢螟的形态及龄期
    3.1 材料与方法
        3.1.1 供试虫源
        3.1.2 试验方法
        3.1.3 数据统计
    3.2 结果与分析
        3.2.1 瓜绢螟的形态特征
        3.2.2 瓜绢螟的龄期划分研究
    3.3 讨论
第四章 西甜瓜重要害虫瓜绢螟的生物学特性研究
    4.1 材料与方法
        4.1.1 供试虫源与试验材料
        4.1.2 试验方法
    4.2 结果与分析
        4.2.1 瓜绢螟不同虫态越冬调查
        4.2.2 瓜绢螟的过冷却点和结冰点
        4.2.3 不同温度条件对瓜绢螟发育历期的影响
        4.2.4 瓜绢螟不同虫态的发育起点温度和有效积温
        4.2.5 瓜绢螟不同温度下的特定时间存活生命表
        4.2.6 瓜绢螟不同温度下的特定时间存活生命表
        4.2.7 不同温度下的实验种群繁殖力及生命表参数
    4.3 讨论
第五章 取食不同西甜瓜品种对截形叶螨生长发育的影响
    5.1 材料与方法
        5.1.1 试验材料
        5.1.2 试验方法
        5.1.3 数据处理
    5.2 结果与分析
        5.2.1 不同西甜瓜品种对截形叶螨发育历期的影响
        5.2.2 不同西甜瓜品种对截形叶螨孵化率及存活率
        5.2.3 不同西甜瓜品种对截形叶螨雌成螨历期和繁殖的影响
        5.2.4 截形叶螨在不同西甜瓜品种上的种群参数
    5.3 讨论
第六章 江苏地区西甜瓜主要害虫的防治试验
    6.1 瓜蚜的防治试验
        6.1.1 材料与方法
        6.1.2 结果与分析
    6.2 截形叶螨的毒力试验
        6.2.1 材料与方法
        6.2.2 结果与分析
    6.3 瓜绢螟的毒力试验
        6.3.1 材料与方法
        6.3.2 结果与分析
    6.4 讨论
参考文献(References)
附录
攻读硕士学位期间发表的研究论文
致谢

(4)十二水磷酸氢二钠相变储能材料的改性及应用研究(论文提纲范文)

摘要
Abstract
第一章 绪论
    1.1 引言
    1.2 研究背景及意义
        1.2.1 研究背景
        1.2.2 研究意义
    1.3 相变材料简介
    1.4 相变储能理论简介
        1.4.1 储能理论
        1.4.2 相变理论
        1.4.3 结晶理论
    1.5 储能材料的确定
        1.5.1 筛选原则
        1.5.2 研究材料的确定
    1.6 国内外研究进展
        1.6.1 相变储能材料研究进展
        1.6.2 十二水磷酸氢二钠复合材料的研究现状
    1.7 研究思路与方案
第二章 实验及表征方法
    2.1 实验样品
    2.2 相分离的抑制
        2.2.1 相分离机理
        2.2.2 抑制相分离的方法
    2.3 过冷的改善
        2.3.1 过冷机理
        2.3.2 降低过冷的方法
    2.4 复合相变材料的制备方法
        2.4.1 复合相变材料简介
        2.4.2 制备方法
    2.5 实验设备及表征
        2.5.1 步冷曲线法
        2.5.2 物相结构表征
        2.5.3 DSC测试
        2.5.4 SEM微观形貌表征
第三章 纯十二水磷酸氢二钠性能研究
    3.1 引言
    3.2 实验设备
    3.3 熔化与冷却过程探究
        3.3.1 实验过程
        3.3.2 保温温度对基体材料熔化过程的影响
    3.4 基体材料过冷特性的研究
        3.4.1 熔融状态基体材料的过冷度
        3.4.2 相变溶液的过冷特性
    3.5 基体材料相变焓值的测定
    3.6 本章小结
第四章 不同成核剂对基体材料相变性能的影响
    4.1 实验部分
        4.1.1 实验原料及试剂
        4.1.2 实验及表征设备
        4.1.3 实验方法
    4.2 水合硅酸钠对基体材料性能的影响
        4.2.1 样品制备
        4.2.2 过冷度
        4.2.3 DSC测试
        4.2.4 红外光谱分析
        4.2.5 微观形貌分析
        4.2.6 小结
    4.3 硅藻土对基体材料性能的影响
        4.3.1 样品制备
        4.3.2 过冷度
        4.3.3 DSC测试
        4.3.4 红外光谱分析
        4.3.5 微观形貌分析
        4.3.6 小结
    4.4 纳米氮化铝对基体材料性能的影响
        4.4.1 样品制备
        4.4.2 过冷度
        4.4.3 DSC测试
        4.4.4 红外光谱分析
        4.4.5 微观形貌分析
        4.4.6 小结
    4.5 皂土对基体材料性能的影响
        4.5.1 样品制备
        4.5.2 过冷度
        4.5.3 DSC测试
        4.5.4 小结
    4.6 本章总结
第五章 复合相变材料的制备
    5.1 制备方案的确定
        5.1.1 实验材料
        5.1.2 实验及表征设备
        5.1.3 实验方案
    5.2 相变温度调节
        5.2.1 相变温度调节原理
        5.2.2 实验过程
        5.2.3 实验结果
    5.3 过冷度改善
        5.3.1 样品制备
        5.3.2 过冷度测试
    5.4 实验表征
        5.4.1 XRD分析
        5.4.2 微观形貌分析
    5.5 本章总结
第六章 复合材料应用装置的设计
    6.1 整体设计方案
        6.1.1 料管尺寸的设计
        6.1.2 料管集成箱体结构设计
        6.1.3 风机固定部分的设计
    6.2 关键部件及功能的仿真分析
        6.2.1 下支撑板静力学分析
        6.2.2 装置送风效果仿真分析
    6.3 小结
第七章 结论与展望
    7.1 结论
    7.2 展望
参考文献
攻读学位期间发表论文情况
作者简介
致谢
附件

(5)北方大棚蔬菜种植技术及病虫害防治策略(论文提纲范文)

1 影响大棚蔬菜种植的主要因素
    1.1 空气因素
    1.2 天气因素
    1.3 温度因素
2 北方大棚蔬菜种植技术要点
    2.1 选择适宜的蔬菜品种
    2.2 选择合适的种植基地
    2.3 做好栽培管理工作
    2.4 科学把控肥料的应用
3 北方大棚蔬菜种植病虫害防治策略
    3.1 农业防治策略
    3.2 生态防治策略
    3.3 生物防治策略
    3.4 物理防治策略
4 结 论

(6)日光温室立体循环主动蓄热系统结构优化与传热特性研究(论文提纲范文)

摘要
ABSTRACT
主要符号对照表
第一章 文献综述
    1.1 研究背景
        1.1.1 国外设施园艺发展概况
        1.1.2 国内设施园艺发展历史
        1.1.3 设施园艺发展类型
        1.1.4 日光温室发展概况
    1.2 日光温室保温蓄热性能研究
        1.2.1 保温性能研究
        1.2.2 蓄热性能研究
    1.3 日光温室结构创新研究
        1.3.1 主动蓄热结构研究
        1.3.2 保温结构研究
        1.3.3 通风结构研究
    1.4 日光温室结构优化设计
        1.4.1 采光设计
        1.4.2 保温设计
        1.4.3 蓄热设计
    1.5 日光温室性能研究方法
        1.5.1 试验分析
        1.5.2 计算模拟
        1.5.3 理论分析
    1.6 本研究的目的与意义
    1.7 本研究的主要内容和方法
        1.7.1 本研究的主要内容
        1.7.2 本研究的主要方法
    1.8 技术路线
第二章 日光温室围护结构热工性能分析及优化
    2.1 试验材料与方法
        2.1.1 试验温室与材料
        2.1.2 试验设备
        2.1.3 测试方法
    2.2 结果与分析
        2.2.1 日光温室热红外图像
        2.2.2 日光温室围护结构表面温度比较
        2.2.3 日光温室热工缺陷面积及对流换热系数比较
        2.2.4 日光温室不同围护结构对热工缺陷敏感性分析
        2.2.5 日光温室保温被综合选择依据与许可的热工缺陷尺度探究
    2.3 本章小结
第三章 不同后墙材料对日光温室室内环境的影响
    3.1 试验材料与方法
        3.1.1 试验温室与材料
        3.1.2 试验仪器
        3.1.3 试验方法
    3.2 结果与分析
        3.2.1 典型晴阴天室内外空气温度的分析
        3.2.2 三种墙体不同深度的温度对比分析
        3.2.3 热流密度变化及蓄放热量对比分析
        3.2.4 墙体传热与蓄热分析
        3.2.5 室内空气及墙体温度的数值模拟
        3.2.6 温室的经济效益
    3.3 本章小结
第四章 传热管道形式对土壤主动蓄热循环效能的影响
    4.1 试验材料与方法
        4.1.1 试验温室与材料
        4.1.2 试验设备
        4.1.3 测试方法
    4.2 结果与分析
        4.2.1 传热管道形式对换热量的影响与蓄热分析
        4.2.2 传热管道形式对覆盖层温度的影响
        4.2.3 不同换热管道形式对不同覆盖层蓄热释放范围的影响
        4.2.4 地中热交换系统覆盖层蓄热释放分析
    4.3 本章小结
第五章 气流运动方式对主动蓄热后墙传热的影响
    5.1 试验材料与方法
        5.1.1 物理模型
        5.1.2 模型假设
        5.1.3 控制方程
        5.1.4 边界条件
        5.1.5 几何模型
        5.1.6 计算参数
    5.2 结果与分析
        5.2.1 气流运动方式对风道沿程温度的影响
        5.2.2 气流运动方式对主动蓄热墙体温度的影响
        5.2.3 气流运动方式对后墙主动蓄热温室室内温度的影响
    5.3 本章小结
第六章 立体循环主动蓄热系统优化与验证
    6.1 试验温室与材料
    6.2 结果与分析
        6.2.1 管路布设方式对管路出入口气温的影响
        6.2.2 管路布设方式对蓄热墙体与土壤温度的影响
        6.2.3 管路布设方式对温室室内温度与流场的影响
        6.2.4 验证温室温度分析
        6.2.5 立体循环主动蓄热系统经济性分析
    6.3 本章小结
第七章 结论与建议
    7.1 主要结论
    7.2 创新点
    7.3 进一步研究的建议
附录
参考文献
致谢
个人简介

(7)大跨度保温塑料大棚(WSOTPG)小气候特征与评价(论文提纲范文)

致谢
摘要
1 文献综述
    1.1 设施的小气候特征研究
    1.2 温度适宜度评价研究进展
    1.3 大棚调控措施的研究
2 引言
3 材料与方法
    3.1 WSOTPG大棚基本结构
        3.1.1 WSOTPG大棚的结构
        3.1.2 WSOTPG大棚的建造成本
    3.2 WSOTPG大棚小气候环境测试
        3.2.1 温度环境
        3.2.2 湿度环境
        3.2.3 光照环境
    3.3 不同调控措施对WSOTPG大棚环境因子的影响
        3.3.1 冬季双层覆盖
        3.3.2 冬季保温被分段覆盖
        3.3.3 夏季保温被遮阳
    3.4 数据分析方法
        3.4.1 温度的计算及分析软件
        3.4.2 温度适宜度及游程计算
4 结果与分析
    4.1 WSOTPG大棚小气候特征
        4.1.1 WSOTPG大棚温度特征
        4.1.2 WSOTPG大棚湿度特征
        4.1.3 WSOTPG大棚光照特征
    4.2 温度适宜度及游程分析
        4.2.1 WSOTPG大棚番茄茬口安排及适宜度取值
        4.2.2 番茄秋冬茬温度适宜度特征
        4.2.3 番茄越冬茬温度适宜度特征
        4.2.4 番茄冬春茬温度适宜度特征
        4.2.5 不适宜阶段的游程分析
        4.2.6 适宜阶段的不适宜时刻分析
    4.3 不适宜天气下小气候调控措施及效果
        4.3.1 低温条件下保温措施及效果分析
        4.3.2 高温条件下降温措施及效果分析
    4.4 WSOTPG大棚科学利用模式及经济分析
        4.4.1 WSOTPG大棚生产利用模式
        4.4.2 WSOTPG大棚经济评价
5 结论与讨论
    5.1 结论
        5.1.1 小气候特征
        5.1.2 适宜度及游程特征
        5.1.3 调控措施及效果
        5.1.4 利用模式及经济分析
    5.2 讨论
参考文献
ABSTRACT

(8)智能温室大棚监控系统的研究与设计(论文提纲范文)

摘要
ABSTRACT
第1章 绪论
    1.1 课题研究背景和意义
    1.2 课题国内外研究现状
    1.3 论文主要研究内容
    1.4 论文章节安排
第2章 系统方案总体设计
    2.1 系统监控对象分析
    2.2 系统方案总体设计
        2.2.1 下位机设计
        2.2.2 上位机设计
    2.3 本章小结
第3章 系统下位机软硬件设计
    3.1 硬件设备选型
        3.1.1 可编程逻辑控制器选型
        3.1.2 触摸屏选型
        3.1.3 传感器选型
        3.1.4 ZigBee无线模块选型
    3.2 无线通信方式的设计
        3.2.1 无线传感器网络
        3.2.2 无线传感器网络的节点结构
        3.2.3 短距离无线通信方式的设计
        3.2.4 通信网络拓扑结构设计
    3.3 数据采集子系统
        3.3.1 ZigBee技术概述
        3.3.2 TI Z-Stack协议栈说明
        3.3.3 传感器采集终端和协调器网关电路设计
        3.3.4 通信数据格式
        3.3.5 软件设计
    3.4 环境调控子系统
        3.4.1 PLC程序总体设计
        3.4.2 PLC资源分配
        3.4.3 PLC软件部分程序设计
        3.4.4 触摸屏软件设计
    3.5 本章小结
第4章 系统上位机监控平台设计
    4.1 硬件选型及软件开发平台分析
        4.1.1 硬件选型
        4.1.2 软件开发平台分析
    4.2 数据库的设计
    4.3 监控平台界面设计
        4.3.1 用户登录界面
        4.3.2 主界面
        4.3.3 大棚监测
        4.3.4 数据管理
        4.3.5 终端设备查询
        4.3.6 终端电量查询
    4.4 本章小结
第5章 温室大棚智能控制策略
    5.1 环境参数分析
    5.2 模糊控制
        5.2.1 模糊控制的基本概念
        5.2.2 模糊控制器的基本组成
    5.3 模糊控制器的设计
        5.3.1 模糊化
        5.3.2 模糊规则的制定
        5.3.3 模糊控制表的制定
        5.3.4 模糊控制器仿真
    5.4 本章小结
第6章 系统测试
    6.1 电路板硬件测试
    6.2 数据采集程序下载
    6.3 ZigBee无线网络通信测试
    6.4 系统性能测试
    6.5 本章小结
第7章 总结与展望
    7.1 总结
    7.2 展望
参考文献
攻读硕士学位期间发表学术论文情况
致谢

(9)耐酸耐盐多抗细菌的筛选及其对植物几种真菌病害的抑制作用(论文提纲范文)

摘要
Abstract
缩略语表
第一章 引言
    1 土传病害概况
        1.1 病害种类
        1.1.1 真菌性病害
        1.1.2 细菌性病害
        1.1.3 病毒性病害
        1.2 病害防治
        1.2.1 化学防治
        1.2.2 农业防治
        1.2.3 生物防治
        1.2.4 生防机制
    2 土壤理化失衡
        2.1 土壤酸化
        2.1.1 土壤酸化危害
        2.1.2 土壤酸化成因
        2.1.3 土壤酸化防治
        2.2 土壤盐渍化
        2.2.1 土壤盐渍化现状
        2.2.2 土壤盐渍化危害
        2.2.3 土壤盐渍化成因
        2.2.4 土壤盐渍化防治
    3 研究的目的及意义
第二章 真菌植物病害功能菌株的筛选及拮抗活性检测
    1 材料
        1.1 供试菌株
        1.2 实验样品
        1.3 筛选培养基
    2 方法
        2.1 功能菌株的筛选
        2.1.1 耐酸耐盐菌株筛选
        2.1.2 拮抗菌株筛选
        2.2 功能菌株抗酸抗盐活性检测
        2.2.1 抗酸活性检测
        2.2.2 抗盐活性检测
        2.3 功能菌株鉴定
        2.3.1 形态鉴定
        2.3.2 分子鉴定
        2.3.3 PCR扩增
        2.3.4 序列分析
        2.4 抑菌谱测定
        2.5 拮抗菌的拮抗活性检测
        2.5.1 离体实验
        2.5.2 盆栽实验
        2.6 耐酸耐盐拮抗菌的其它功能探索
        2.6.1 抗性基因
        2.6.2 产铁载体能力检测
        2.6.3 激素调节
        2.6.4 ACC脱氨酶
    3 结果
        3.1 功能菌株筛选
        3.2 功能菌的抗酸抗盐活性检测
        3.3 菌株鉴定
        3.4 抑菌谱实验
        3.5 拮抗菌的拮抗活性检测
        3.6 耐酸耐盐拮抗菌的其它功能探索
    4 小结与讨论
第三章 功能菌株的培养及发酵条件优化
    1 实验材料
        1.1 供试菌株
        1.2 培养基
        1.3 种子发酵液的制备
    2 实验方法
        2.1 生长曲线和pH的测定
        2.2 发酵培养基优化
        2.2.1 碳源优化
        2.2.2 氮源优化
        2.2.3 无机盐优化
        2.3 正交试验
        2.4 发酵条件优化
        2.4.1 温度优化
        2.4.2 转速优化
        2.4.3 初始pH优化
        2.4.4 接种量优化
        2.5 发酵条件的响应面优化
    3 实验结果
        3.1 生长曲线和pH值
        3.2 培养基优化结果
        3.2.1 碳源选择
        3.2.2 氮源选择
        3.2.3 无机盐选择
        3.3 正交试验结果
        3.4 发酵条件优化实验结果
        3.4.1 培养温度优化
        3.4.2 培养转速优
        3.4.3 初始pH优化
        3.4.4 接种量优化
        3.5 响应面分析及实验结果
    4 小结与讨论
第四章 讨论与总结
参考文献
附录一 培养基的配制
附录二 引物序列
攻读硕士学位期间研究成果
致谢

(10)基于大棚固碳的太阳能智能灌溉调控系统的研究(论文提纲范文)

摘要
Abstract
第一章 绪论
    1.1 课题来源
    1.2 课题背景与意义
        1.2.1 研究背景
        1.2.2 研究意义
    1.3 国内外大棚气肥灌溉技术发展现状
        1.3.1 国外研究进展
        1.3.2 国内研究进展
    1.4 研究内容
    1.5 技术路线
第二章 系统总体要求与方案设计
    2.1 光合作用机理分析
    2.2 系统设计
        2.2.1 功能需求分析
        2.2.2 性能需求分析
    2.3 大棚固碳调控系统总体架构
    2.4 关键技术分析
        2.4.1 Lab VIEW虚拟仪器程序编写
        2.4.2 模型控制设计
    2.5 本章小结
第三章 气肥灌溉决策模型研究
    3.1 模糊控制决策程序
    3.2 模糊控制理论
    3.3 模糊控制器的设计
        3.3.1 确定模型输入输出变量
        3.3.2 输入输出论域的确定
        3.3.3 模糊隶属度函数的选择与验证
        3.3.4 模糊规则的设计
        3.3.5 解模糊
    3.4 本章小结
第四章 大棚固碳调控系统软硬件编写与设计
    4.1 核心处理器模块
    4.2 传感器模块选型
        4.2.1 二氧化碳传感器选型
        4.2.2 土壤温度(水分)变送器
        4.2.3 光照度传感器
    4.3 二氧化碳调控装置设计
    4.4 PLC控制电路设计
    4.5 系统软件编写
        4.5.1 系统主程序设计概述
        4.5.2 用户界面登录程序
        4.5.3 水箱液位/土壤湿度监控程序
        4.5.4 温度监控程序
        4.5.5 光照强度监控程序
        4.5.6 二氧化碳浓度监控程序设计
    4.6 本章小结
第五章 实验验证
    5.1 气肥灌溉决策模型验证
    5.2 大棚固碳调控系统运行验证
        5.2.1 系统有效性验证
        5.2.2 各性能参数测量精准性验证
    5.3 本章小结
第六章 总结与展望
    6.1 结论
    6.2 展望
参考文献
致谢
附录 A 各程序功能模块结构图
附录 B 各组番茄苗幼苗期和生长期图片
附录 C 攻读硕士学位期间取得的成果

四、几种大棚蔬菜对温度的要求(论文参考文献)

  • [1]基于STM32的温室环境监测和控制系统[D]. 郭磊. 齐鲁工业大学, 2021(09)
  • [2]内保温日光温室温光性能的研究[D]. 孙潜. 内蒙古农业大学, 2021
  • [3]江苏地区西甜瓜重要害虫生物学及防治技术研究[D]. 邱晔. 扬州大学, 2021(08)
  • [4]十二水磷酸氢二钠相变储能材料的改性及应用研究[D]. 郝策. 河北农业大学, 2021(05)
  • [5]北方大棚蔬菜种植技术及病虫害防治策略[J]. 高海燕. 粮食科技与经济, 2020(11)
  • [6]日光温室立体循环主动蓄热系统结构优化与传热特性研究[D]. 孙亚琛. 西北农林科技大学, 2020
  • [7]大跨度保温塑料大棚(WSOTPG)小气候特征与评价[D]. 余路明. 河南农业大学, 2020(06)
  • [8]智能温室大棚监控系统的研究与设计[D]. 程仕发. 太原理工大学, 2020(07)
  • [9]耐酸耐盐多抗细菌的筛选及其对植物几种真菌病害的抑制作用[D]. 张帅帅. 浙江理工大学, 2020(06)
  • [10]基于大棚固碳的太阳能智能灌溉调控系统的研究[D]. 张泉. 广州大学, 2020

标签:;  ;  ;  ;  ;  

几种大棚蔬菜的温度要求
下载Doc文档

猜你喜欢